Answer:
[tex] f = \frac{299790000 \frac{m}{s}}{3.03 m}= 9890594.06 Hz[/tex]
And if we convert to megahertz we got:
[tex]9890594.06 Hz *\frac{1MHz}{10^6 Hz}= 98.9 MHz[/tex]
Step-by-step explanation:
For any mechanical wave we have the following general relationship:
[tex] v = \lambda f[/tex]
where:
v represent the speed of the wave = 299790000 m/s
[tex]\lambda = 3.03m[/tex] represent the wavelength for the radio station
f represent the frequency of interest
If we solve for the frequency we got:
[tex] f = \frac{v}{\lambda}[/tex]
And replacing the values we got:
[tex] f = \frac{299790000 \frac{m}{s}}{3.03 m}= 9890594.06 Hz[/tex]
And if we convert to megahertz we got:
[tex]9890594.06 Hz *\frac{1MHz}{10^6 Hz}= 98.9 MHz[/tex]