Use Euler’s method to estimate the value of y(20). Use a step size of ∆x = 5. Please fill out the remainder of the chart completely. Please round everything to 4 decimal places. dy dx = 0.4xy, y(0) = 2

Respuesta :

Answer:

y(20)=14,322

Step-by-step explanation:

We need to solve the equation:

[tex]dy/dx=0.4xy[/tex]

with initial point

[tex]y(0) = 2[/tex]

with incerments

[tex]\Delta x=h=5[/tex]

By Euler's method, we have:

[tex]y(x+h)=y(x)+h*f'(x,y)[/tex]

We start with the initial point

[tex]y(5)=y(0)+5*f'(0,2)=2+5*(0.4*0*2)=2[/tex]

And we continue until we reach the value for y(20)

[tex]y(10)=y(5)+5*f'(5,2)=2+5*(0.4*5*2)=2+20=22\\\\\\y(15)=y(10)+5*f'(10,22)=22+5*(0.4*10*22)=22+440=462\\\\\\y(20)=y(15)+5*f'(15,462)=462+5*(0.4*15*462)=462+13,860\\\\y(20)=14,322[/tex]