The first ionization energy, E , of a helium atom is 3.94 aJ. What is the wavelength of light, in nanometers, that is just sufficient to ionize a helium atom? Values for constants can be found in the Chempendix.

Respuesta :

Answer: 50.2 nm

Explanation:

The relation between energy and wavelength of light is given by Planck's equation, which is:

[tex]E=\frac{hc}{\lambda}[/tex]

where,

E = energy of the light = 3.94aJ= [tex]3.94\times 10^{-18}J[/tex]   [tex]1aJ=10^{-18}J[/tex]

h = Planck's constant =[tex]6.6\times 10^{-34}Js[/tex]

c = speed of light =[tex]3.0\times 10^8ms^{-1}[/tex]

[tex]\lambda[/tex] = wavelength of light = ?

Putting all the values we get:

[tex]3.94\times 10^{-18}=\frac{6.6\times 10^{-34}\times 3.0\times 10^8}{\lambda}[/tex]  

[tex]\lambda=5.02\times 10^{-8}m=50.2nm[/tex]    [tex]1nm=10^{-9}m[/tex]

Thus the wavelength of light, in nanometers that is just sufficient to ionize a helium atom is 50.2 nm