Respuesta :
Answer:
The required pumping head is 1344.55 m and the pumping power is 236.96 kW
Explanation:
The energy equation is equal to:
[tex]\frac{P_{1} }{\gamma } +\frac{V_{1}^{2} }{2g} +z_{1} =\frac{P_{2} }{\gamma } +\frac{V_{2}^{2} }{2g} +z_{2}+h_{i} -h_{pump} , if V_{1} =0,z_{2} =0\\h_{pump} =\frac{V_{2}^{2}}{2} +h_{i}-z_{1}[/tex]
For the pipe 1, the flow velocity is:
[tex]V_{1} =\frac{Q}{\frac{\pi D^{2} }{4} }[/tex]
Q = 18 L/s = 0.018 m³/s
D = 6 cm = 0.06 m
[tex]V_{1} =\frac{0.018}{\frac{\pi *0.06^{2} }{4} } =6.366m/s[/tex]
The Reynold´s number is:
[tex]Re=\frac{\rho *V*D}{u} =\frac{999.1*6.366*0.06}{1.138x10^{-3} } =335339.4[/tex]
[tex]\frac{\epsilon }{D} =\frac{0.00026}{0.06} =0.0043[/tex]
Using the graph of Moody, I will select the f value at 0.0043 and 335339.4, as 0.02941
The head of pipe 1 is:
[tex]h_{1} =\frac{V_{1}^{2} }{2g} (k_{L}+\frac{fL}{D} )=\frac{6.366^{2} }{2*9.8} *(0.5+\frac{0.0294*20}{0.06} )=21.3m[/tex]
For the pipe 2, the flow velocity is:
[tex]V_{2} =\frac{0.018}{\frac{\pi *0.03^{2} }{4} } =25.46m/s[/tex]
The Reynold´s number is:
[tex]Re=\frac{\rho *V*D}{u} =\frac{999.1*25.46*0.03}{1.138x10^{-3} } =670573.4[/tex]
[tex]\frac{\epsilon }{D} =\frac{0.00026}{0.03} =0.0087[/tex]
The head of pipe 1 is:
[tex]h_{2} =\frac{V_{2}^{2} }{2g} (k_{L}+\frac{fL}{D} )=\frac{25.46^{2} }{2*9.8} *(0.5+\frac{0.033*36}{0.03} )=1326.18m[/tex]
The total head is:
hi = 1326.18 + 21.3 = 1347.48 m
The required pump head is:
[tex]h_{pump} =\frac{25.46^{2} }{2*9.8} +1347.48-36=1344.55m[/tex]
The required pumping power is:
[tex]P=Q\rho *g*h_{pump} =0.018*999.1*9.8*1344.55=236965.16W=236.96kW[/tex]