Respuesta :
Answer:
the magnitude of the electron's acceleration a at that moment = [tex]1.176*10^{15} \ m/s^2[/tex]
Explanation:
The expression for the magnetic field is :
[tex]B = \frac{\mu_0 I}{2 \pi r}[/tex]
where:
[tex]\mu_0[/tex] = permeability of free space = [tex]4 \pi * 10^{-7} \ T . m/A[/tex]
I = current in the wire = 12.7 A
r = distance from the wire to the field point = 3.47 cm = [tex]3.47 *10^{-2} m[/tex]
[tex]B = \frac{(4 \pi *10^{-7}(12.7)}{2 \pi (3.47*10^{-2})}[/tex]
[tex]B = 7.3199*10^{-5} \ T[/tex]
The magnetic force exerted in the electrond passing through the straight conducting wire is:
F = Bvgsinθ
where :
B = magnetic field = [tex]7.3199*10^{-5} \ T[/tex]
v = speed of light = [tex](3*10^8 \ m/s)[/tex](30.5 % )
q = charge of electrons = [tex]1.6*10^{-19} \ C[/tex]
θ = angle between speed of electron & field = 90°
F = ([tex]7.3199*10^{-5} \ T[/tex]) × [tex](3*10^8 \ m/s)[/tex](30.5 % ) × ([tex]1.6*10^{-19} \ C[/tex]) × ( sin 90°)
F = [tex]1.0716 *10^{-15} \ N[/tex]
From Newtons second Law ;
F = ma
[tex]a = \frac{F}{m}[/tex]
where m = mass = [tex]9.11*10^{-31} \ kg[/tex]
[tex]a = \frac{1.0716*10^{-15 }N}{9.11*10^{-31} \ kg}[/tex]
[tex]a = 1.176*10^{15} \ m/s^2[/tex]
Thus, the magnitude of the electron's acceleration a at that moment = [tex]1.176*10^{15} \ m/s^2[/tex]
The acceleration of the electron at that moment is 1.178 x 10¹⁵ m/s².
The given parameters;
- position of the electron, r = 3.47 cm
- speed of light, c = 3 x 10⁸ m/s
- current flowing in the field, I = 12.7 A
The magnitude of the magnetic field is calculated as follows;
[tex]B = \frac{\mu_0 I}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7}) \times (12.7)}{2\pi \times (3.47\times 10^{-2})} \\\\B = 7.32 \times 10^{-5} \ T[/tex]
The magnetic force on the electron is calculated as follows;
F = qvB
[tex]F = (1.602 \times 10^{-19}) \times (0.305 \times 3\times 10^8) \times (7.32 \times 10^{-5})\\\\F = 1.073 \times 10^{-15}\ N[/tex]
The acceleration of the electron is calculated as follows;
[tex]a = \frac{F}{m} \\\\a= \frac{(1.073\times 10^{-15})}{9.11 \times 10^{-31} } \\\\a = 1.178 \times 10^{15} \ m/s^2[/tex]
Thus, the acceleration of the electron at that moment is 1.178 x 10¹⁵ m/s².
Learn more here:https://brainly.com/question/10133129