Respuesta :
Answer:
[tex]E_T= 28J[/tex]
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:
[tex]E_T=U+K=\frac{1}{2} k \Delta x^2+\frac{1}{2} mv^2[/tex]
Where:
[tex]\Delta x=Amplitude\hspace{3}or\hspace{3}d eformation\hspace{3} of\hspace{3} the\hspace{3} spring\\m=Mass\hspace{3}of\hspace{3}the\hspace{3}block\\k=Constant\hspace{3}of\hspace{3}the\hspace{3}spring\\v=Velocity\hspace{3}of\hspace{3}the\hspace{3}block[/tex]
There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:
[tex]E_T=\frac{1}{2} k \Delta x^2\\\\14=\frac{1}{2} k7^2\\\\Solving\hspace{3} for\hspace{3} k\\\\k=\frac{28}{49} =\frac{4}{7}[/tex]
The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since [tex]\Delta x=0[/tex], so:
[tex]E_T=\frac{1}{2} mv^2\\\\14=\frac{1}{2} mv^2\\\\Solving\hspace{3} for\hspace{3} v\\\\v^2=\frac{28}{m}[/tex]
Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:
[tex]E_T=U+K=\frac{1}{2} k \Delta x^2+\frac{1}{2} m_2v^2[/tex]
Where in this case:
[tex]m_2=New\hspace{3}mass=Twice\hspace{3} the\hspace{3} mass \hspace{3}of\hspace{3} the\hspace{3} original=2m[/tex]
Therefore:
[tex]E_T=\frac{1}{2} (\frac{4}{7} ) (7^2)+\frac{1}{2} (2m)(\frac{28}{m_2})=\frac{1}{2} (\frac{4}{7} ) (7^2)+\frac{1}{2} (2m)(\frac{28}{2m})=14+14=28J[/tex]