A heat pump operates on a Carnot heat pump cycle with a COP of 12.5. It keeps a space at 24°C by consuming 2.15 kW of power. Determine the temperature of the reservoir from which the heat is absorbed and the heating load provided by the heat pump.

Respuesta :

Answer:

a) [tex]T_{L} = 273.378\,K\,(0.228\,^{\textdegree}C)[/tex], b) [tex]\dot Q_{H} = 26.875\,kW[/tex]

Explanation:

a) The Coefficient of Performance of the Carnot Heat Pump is:

[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]

After some algebraic handling, the temperature of the cold reservoir is determined:

[tex]T_{H}-T_{L} = \frac{T_{H}}{COP_{HP}}[/tex]

[tex]T_{L} = T_{H}\cdot \left(1-\frac{1}{COP_{HP}} \right)[/tex]

[tex]T_{L} = (297.15\,K)\cdot \left(1-\frac{1}{12.5}\right)[/tex]

[tex]T_{L} = 273.378\,K\,(0.228\,^{\textdegree}C)[/tex]

b) The heating load provided by the heat pump is:

[tex]\dot Q_{H} = COP_{HP}\cdot \dot W[/tex]

[tex]\dot Q_{H} = (12.5)\cdot (2.15\,kW)[/tex]

[tex]\dot Q_{H} = 26.875\,kW[/tex]