Use the exponential decay​ model, Upper A equals Upper A 0 e Superscript kt​, to solve the following. The​ half-life of a certain substance is 25 years. How long will it take for a sample of this substance to decay to 60​% of its original​ amount?

Respuesta :

Answer:

18.42 years.

Step-by-step explanation:

We have been that the half-life of a certain substance is 25 years. We are asked to find time taken by substance to decay to 60​% of its original​ amount.

We will use formula [tex]A=A_0\cdot e^{kt}[/tex] to solve our problem.

First of all, we will find value of k using [tex]A=\frac{1}{2}[/tex], [tex]A_0=1[/tex] and [tex]t=25[/tex].

[tex]\frac{1}{2}=1\cdot e^{k\cdot 25}[/tex]

[tex]0.5=e^{25k}[/tex]

Now we will take natural log of both sides of equation.

[tex]\text{ln}(0.5)=\text{ln}(e^{25k})[/tex]

[tex]\text{ln}(0.5)=25k\text{ln}(e)[/tex]

[tex]\text{ln}(0.5)=25k(1)[/tex]

[tex]k=\frac{\text{ln}(0.5)}{25}[/tex]

Our function would be [tex]A=A_0\cdot e^{\frac{\text{ln}(0.5)}{25}t}[/tex].

Now we have [tex]A=0.60[/tex] and [tex]A_0=1[/tex].

[tex]0.60=1\cdot e^{\frac{\text{ln}(0.5)}{25}t}[/tex]

[tex]0.60=e^{\frac{-0.6931471805599}{25}t}[/tex]

[tex]0.60=e^{-0.02772588722239t}[/tex]

Now we will take natural log on both sides.

[tex]\text{ln}(0.60)=\text{ln}(e^{-0.02772588722239t})[/tex]

[tex]\text{ln}(e^{-0.02772588722239t})=\text{ln}(0.60)[/tex]

[tex]-0.02772588722239t\cdot \text{ln}(e)=\text{ln}(0.60)[/tex]

[tex]-0.02772588722239t\cdot 1=\text{ln}(0.60)[/tex]

[tex]\frac{-0.02772588722239t}{-0.02772588722239}=\frac{\text{ln}(0.60)}{-0.02772588722239}[/tex]

[tex]t=\frac{-0.5108256237659907}{-0.02772588722239}[/tex]

[tex]t=18.424139854[/tex]

[tex]t\approx 18.42[/tex]

Therefore, it will take approximately 18.42 years for a sample of this substance to decay to 60​% of its original​ amount