cos2x Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.)

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]f(x)=cos2x[/tex]

[[tex]\frac{\pi}{8},\frac{7\pi}{8}[/tex]]

1.Cos2x is continuous on given interval [[tex]\frac{\pi}{8},\frac{7\pi}{8}[/tex]]

2.Cos 2x is differentiable in ([tex]\frac{\pi}{8},\frac{7\pi}{8}[/tex])

3.[tex]f(\frac{\pi}{8})=Cos2(\frac{\pi}{8})=cos\frac{\pi}{4}=\frac{1}{\sqrt 2}[/tex]

[tex]f(\frac{7\pi}{8})=Cos(\frac{7\pi}{4}=Cos(2\pi-\frac{\pi}{4})=Cos\frac{\pi}{4}=\frac{1}{\sqrt 2}[/tex]

Using the formula

[tex]Cos(2\pi -x)=Cos x[/tex]

Therefore, f(a)=f(b)

Hence,Cos 2x satisfies the three hypothesis of Roll's theorem on the given interval.

[tex]f'(x)=-2Sin2 x[/tex]

Substitute x=c

[tex]f'(c)=-2Sin2x[/tex]

[tex]f'(c)=0[/tex]

[tex]-2Sin2x=0[/tex]

[tex]2x=n\pi[/tex]

[tex]x=\frac{n\pi}{2}[/tex]

Where [tex]n\in Z[/tex]

Substitute n=1

[tex]x=\frac{\pi}{2}[/tex] lies in the given interval.

Hence, the value of c=[tex]\frac{\pi}{2}[/tex]