. The U.S. Postal Service will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 108 inches. What dimensions will give a box with a square end the largest volume

Respuesta :

Answer:

Dimension a = 18 , b= 36 will give a box with a square end the largest volume

Step-by-step explanation:

Given -

sum of box length and girth (distance around) does not exceed 108 inches.

Let b be the lenth of box and a be the side of square

b  +  4a = 108

b = 108 - 4a                

Volume of box =[tex]area \times lenth[/tex]

                         =  [tex]a^2\times b[/tex]

    V  =  [tex]a^2\times b[/tex]

puting the value of b

                      V  = [tex]a^2 ( 108 - 4a )[/tex]

                     [tex]V = 108a^2 - 4a^3[/tex]

To find the maximum value of V  

(1)  we differentiate it

 [tex]\frac{\mathrm{d} V}{\mathrm{d} a} = 216a - 12a^2[/tex]

(2)   [tex]\frac{\mathrm{d} V}{\mathrm{d} a} = 0[/tex]

[tex]216a - 12a^2[/tex] = 0

12a ( 18 - a ) =

a = 0  and a = 18

(3)       putting the value of a if [tex]\frac{\mathrm{d^2} V}{\mathrm{d} a^2}[/tex] = negative then the value for a ,V  is maximum

     [tex]\frac{\mathrm{d^2} V}{\mathrm{d} a^2}[/tex] = 216 - 24a

put the value of a = 0 ,  [tex]\frac{\mathrm{d^2} V}{\mathrm{d} a^2}[/tex]  = 216

put the value of a = 18  ,  [tex]\frac{\mathrm{d^2} V}{\mathrm{d} a^2} =[/tex] negative

for the value of a =18  V gives maximum value

Max volume = [tex]108\times18^2 - 4\times18^3[/tex]    

                      =  11664

a = 18 ,  b = 108 - 4a = [tex]108 - 4\times 18[/tex] = 36