A power cycle operates between hot and cold reservoirs at 500 K and 310 K, respectively. At steady state, the cycle rejects energy by heat transfer to the cold reservoir at a rate of 16 MW. Determine the maximum theoretical power that might be developed by such a cycle, in MW.

Respuesta :

Answer:

Maximum theoretical power=16(500-310)=3040 MW

Answer:

Maximum theoretical power (output) = 9.80 W

Explanation:

The efficiency of power is given by:

η = [tex]1 - \frac{T_H}{T_H}[/tex] = [tex]\frac{T_H - T_C}{T_H}[/tex]

Where [tex]T_H[/tex] is temperature of hot reservoir and [tex]T_C[/tex] is temperature of cold reservoir.

given:

[tex]T_H[/tex] = 500 K

[tex]T_C[/tex] = 310 K

The efficiency of power cycle

η = [tex]\frac{500 K - 310 K}{500 K}[/tex]

η = [tex]\frac{190 K}{500 K}[/tex]

η = 0.38

Efficiency in terms of heat rejected and heat transferred to power cycle is as follows

η = [tex]1 - \frac{Q_{rejected}}{Q_{transferred}}[/tex]

known that: η = 0.38 and [tex]Q_{rejected}[/tex] = 16 MW

0.38 = [tex]1 - \frac{16 MW}{Q_{transferred}}[/tex]

[tex]\frac{16 MW}{Q_{transferred}}[/tex] = 1 - 0.38

[tex]\frac{16 MW}{Q_{transferred}}[/tex] = 0.62

[tex]Q_{transferred}[/tex] = 25.80 MW

W = [tex]Q_{transferred}[/tex]  -  [tex]Q_{rejected}[/tex]  

W = 25.80 MW - 16 MW

W = 9.80 MW