Answer:
The capacitance of the deflecting plates is [tex]C=1.59 pF[/tex].
Explanation:
The expression for the capacitance of the capacitor in terms of area and distance is as follows;
[tex]C=\frac{\varepsilon _{0}A}{d}[/tex]
Here, C is the capacitance, A is the area, d is the distance and [tex]\varepsilon _{0}[/tex] is the absolute permittivity.
Convert the side of the square from cm to m.
s= 3.0 cm
s= 0.030 m
Calculate the area of the square.
[tex]A= s_^{2}[/tex]
Put s= 0.030 m.
[tex]A=(0.030)_^{2}[/tex]
[tex]A=9\times10^{-4}m^{-2}[/tex]
Convert distance from mm to m.
d= 5.0 mm
[tex]d=5\times10^{-3}m[/tex]
Calculate the capacitance of the deflecting plates.
[tex]C=\frac{\varepsilon _{0}A}{d}[/tex]
Put [tex]d=5\times10^{-3}m[/tex], [tex]A=9\times10^{-4}m^{-2}[/tex] and [tex]\varepsilon _{0}=8.85\times 10^{-12}Fm^{-1}[/tex].
[tex]C=\frac{(8.85\times 10^{-12})(9\times10^{-4})}{5\times10^{-3}}[/tex]
[tex]C=1.59\times 10^{-12}F[/tex]
[tex]C=1.59 pF[/tex]
Therefore, the capacitance of the deflecting plates is [tex]C=1.59 pF[/tex].