Answer:
a)
[tex]p_2= 2MPa[/tex]
b)
[tex]T_3 =1074^oC[/tex]
c)
[tex]W_{12}=534.14kJ[/tex]
[tex]W_{23}=0[/tex]
[tex]Q_{12}=534.14kJ[/tex]
[tex]Q_{23}=2192.7kJ[/tex]
Explanation:
Given that:
P₁ = 4 MPa
T₁ = 264°C
mass (m) = 5kg
R = 0.287 kJ/kg.K
a) To calculate the pressure at state 2 [tex]p_2[/tex], we use ideal gas equation and since final volume is twice the initial volume, [tex]\frac{V_2}{V_1} = 1[/tex]
Therefore: [tex]p_2=p_1\frac{V_1}{V_2}=4MPa *0.5 = 2MPa[/tex]
b) To calculate the temperature at state 3 [tex]T_3[/tex], we use ideal gas equation and since [tex]T_2=T_1=264^oC=537K[/tex] and [tex]p_3=p_1[/tex]
Therefore: [tex]T_3=T_2\frac{p_3}{p_2}=537\frac{4MPa}{2MPa} =1074^oC[/tex]
c) To calculate work ([tex]W_{12}[/tex]), we use the isothermal equation
Therefore: [tex]W_{12}=mRT_1ln(\frac{V_2}{V_1})=5*0.287*537*ln(\frac{4MPa}{2MPa} ) =534.14kJ[/tex]
Since no volume change between process 2 and 3, work done ([tex]W_{23}=0[/tex])
Between process 1 and 2, no temperature change,
Therefore: [tex]Q_{12}=W_{12}=534.14kJ[/tex]
To calculate the heat transfer between process 2 and 3, we use the
[tex]u_3=827.88\frac{kJ}{kg} \\u_2=389.34\frac{kJ}{kg}[/tex]
[tex]Q_{23}=m(u_3-u_2)+W_{23}=5(827.88-389.34)+0=2192.7kJ[/tex]