Answer:
The final temperature is 225.205 °C
Explanation:
We have given
[tex]T_{1}[/tex] = 60 °C = 333.15 K Initial temperature
[tex]P_{gage}[/tex] = 300 kPa , gage initial pressure ,
[tex]P_{gage2}[/tex] = 600 kPa , gage final pressure ,
[tex]P_{\alpha }[/tex] = 101.325 kPa
[tex]P_{1}[/tex] = [tex]P_{gage} + P_{\alpha }[/tex]
[tex]P_{1}[/tex] = [tex]300 kPa + 1 atm (101.325 kPa/1atm)[/tex]
[tex]P_{1}[/tex] = 401.299 kPa.
And
[tex]P_{2 } = P_{gage 2}+ P_{\alpha }[/tex]
[tex]P_{2 } = 600 kPa + 1 atm ( 101.325 kPa/1 atm)[/tex]
[tex]P_{2 } =[/tex] 600. 299 kPa
So according to ideal gas Model
[tex]P_{ 1} V_{1} = ( R^{-} /m )T_{1}[/tex] this is equation one
[tex]P_{ 2} V_{2} = ( R^{-} /m )T_{2}[/tex] this is equation two
so By dividing equation two with equation one we get
[tex]T_{1} /P_{1} = T_{2} /P_{2}[/tex]
putting values we get
[tex]333.15K/401.299 kPa = T_{2}/600.299 kPa[/tex]
[tex]T_{2}= 498.355 K[/tex] = 225.205 °C
This is final temperature