Answer:
Part(a): The velocity of the red puck is [tex]\bf{0.2500~m/s}[/tex] and the direction will be the same as initial direction of blue puck.
Part(b): The mass of the red puck is [tex]\bf{0.024~Kg}[/tex].
Explanation:
Given:
The mass of the blue puck, [tex]m_{b} = 0.0400~Kg[/tex]
The initial velocity of the blue puck, [tex]v_{ib} = 0.200~m/s[/tex]
The final velocity of the blue puck, [tex]v_{fb} = 0.0500~m/s[/tex]
The initial velocity of the red puck, [tex]v_{ir} = 0~m/s[/tex]
Consider the mass of the red puck be [tex]m_{r}[/tex] and its final velocity be [tex]v_{fr}[/tex].
Part(a):
The relation between the relative velocities of the particles is given by
[tex]v_{ib} - v_{ir} = v_{fr} - v_{fb}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)[/tex]
Substitute the values in equation (1)
[tex]~~~~&& 0.200~m/s - 0 = v_{fr} - 0.0500~m/s\\&or,& v_{fr} = 0.2500~m/s[/tex]
Part(b):
From momentum conservation,
[tex]m_{b}v_{ib} + m_{r}v_{ir} = m_{b}v_{fb} + m_{r}v_{fr}~~~~~~~~~~~~~~~~~~~~~~~~(2)[/tex]
Substitute the values in equation (2).
[tex]~~~~(0.0400~Kg)(0.200~m/s) - 0 = m_{r}(0.2500~m/s) + (0.0400~Kg)(0.05~m/s)\\&or,& m_{r} = 0.024~Kg[/tex]