Respuesta :
Answer:
a) [tex] P(X <8)= F(8) =\frac{8}{20}= 0.4[/tex]
[tex]P(X>14) = 1-P(X<14) = 1-F(14) = 1-\frac{14}{20}= 0.3[/tex]
b) [tex] P(7< X<11)= F(11) -F(7) = \frac{11}{20} -\frac{7}{20}= 0.55-0.35=0.20[/tex]
c) We want to find a value c who satisfy this condition:
[tex] P(x<c) = 0.9[/tex]
And using the cumulative distribution function we have this:
[tex]P(x<c) = F(c) = \frac{c-0}{20-0} =0.9[/tex]
And solving for c we got:
[tex] c = 20*0.9 = 18[/tex]
Step-by-step explanation:
For this case we define the random variable X as he amount of time (in minutes) that a particular San Francisco commuter must wait for a BART train, and we know that the distribution for X is given by:
[tex] X \sim Unif (a=0, b =20)[/tex]
Part a
We want this probability:
[tex] P(X <8)[/tex]
And for this case we can use the cumulative distribution function given by:
[tex] F(x) = \frac{x-a}{b-a} = \frac{x-0}{20-0}= \frac{x}{20}[/tex]
And using the cumulative distribution function we got:
[tex] P(X <8)= F(8) =\frac{8}{20}= 0.4[/tex]
For the probability [tex]P(X>14)[/tex] if we use the cumulative distribution function and the complement rule we got:
[tex]P(X>14) = 1-P(X<14) = 1-F(14) = 1-\frac{14}{20}= 0.3[/tex]
Part b
We want this probability:
[tex] P(7< X<11)[/tex]
And using the cdf we got:
[tex] P(7< X<11)= F(11) -F(7) = \frac{11}{20} -\frac{7}{20}= 0.55-0.35=0.20[/tex]
Part c
We want to find a value c who satisfy this condition:
[tex] P(x<c) = 0.9[/tex]
And using the cumulative distribution function we have this:
[tex]P(x<c) = F(c) = \frac{c-0}{20-0} =0.9[/tex]
And solving for c we got:
[tex] c = 20*0.9 = 18[/tex]