An isolated conducting sphere has a 10 cm radius. One wire carries a current of 1.000 002 0 A into it. Another wire carries a current of 1.000 000 0 A out of it. How long would it take for the sphere to increase in potential by 1000 V?

Respuesta :

Answer:

t = 5.56 ms

Explanation:

Given:-

- The current carried in, Iin = 1.000002 C

- The current carried out, Iout = 1.00000 C

- The radius of sphere, r = 10 cm

Find:-

How long would it take for the sphere to increase in potential by 1000 V?

Solution:-

- The net charge held by the isolated conducting sphere after (t) seconds would be:

                                   qnet = (Iin - Iout)*t

                                   qnet = t*(1.000002 - 1.00000) = 0.000002*t

- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:

                                   V = k*qnet / r

Where,                        k = 8.99*10^9   ..... Coulomb's constant

                                   qnet = V*r / k

                                   t = 1000*0.1 / (8.99*10^9 * 0.000002)

                                   t = 5.56 ms