contestada

Find the area of the region that lies inside the first curve and outside the second curve.
r = 15 cos θ, r = 7 + cos θ

Respuesta :

Area is 404.5

Explanation:

Given:

r = 15 cos θ

r = 7 + cos θ

Area of the region, A = ?

When the curves intersect, then the r values are equal.

So,

15 cos θ = 7 + cos θ

15 cos θ - cos θ = 7

14 cos θ = 7

cos θ = [tex]\frac{7}{14}[/tex]

cos θ = [tex]\frac{1}{2}[/tex]

θ = 60°

To find the value of r from 15 cos θ:

r = 15 cos (60°)

r = [tex]15 X\frac{1}{2}[/tex]

r = 7.5

Below is the figure attached for your reference.

Because of symmetry, the shaded area is

[tex]A = 2\int\limits^1_7 {r} \, dr \int\limits^\pi _0 {[14 cos(theta) - 7]} \, d(theta) \\\\A = 2\int\limits^1_7 {r} \, dr [14 sin (theta) - 7(theta)]^\pi ^/^3_0 \\\\A = 2[14 sin(\pi /3) - 7(\pi /3)][\frac{r^2}{2}]^1^5_7_._5\\ \\A = 4.794 X 89.375\\\\A = 404. 49[/tex]

The limit is 7.5 to 15

Therefore, the area of the region is 404.5

Ver imagen thamimspartan