John stands 150 meters from a water tower and sights the top at an angle of elevation of 36º. If John's eyes are 2 meters above the ground, how tall is the tower? Round to the nearest meter.

Respuesta :

Answer:

The height of tower [tex]DB=111\ meters[/tex].

Step-by-step explanation:

Diagram of the given scenario is shown below.

Given that,

Distance between John and tower is  [tex]CE=150 \ meters[/tex].

Angle of elevation to the top of the tower is [tex]\angle DEC=36[/tex]°.

Height of John is  [tex]CB=2\ meters[/tex].

To Find: Height of the tower [tex]DB[/tex].

So,

In triangle ΔDCE,

                    [tex]Tan[/tex](∠[tex]DEC)= \frac{DC}{CE}[/tex]

                    [tex]Tan (36)= \frac{DC}{150}[/tex]

                     [tex]DC= tan(36)\times 150[/tex]

                     [tex]DC=108.98\ meters[/tex]

Now,

To calculate the height of tower we have

                    [tex]DB=DC+CB[/tex]

                    [tex]DB=108.98+2[/tex]

                    [tex]DB=110.98\ meters[/tex] ≈ [tex]111 \ meters[/tex]

Therefore,

The height of tower [tex]DB=111\ meters[/tex].

           

Ver imagen sihanmintu