Respuesta :

Given:

In ΔPQR, the measure of ∠R=90°, the measure of ∠P=52°, and QR = 9.6 feet.

We need to determine the length of RP.

Length of RP:

The image of the triangle PQR is attached below.

Using the figure, the length of RP can be determined using the trigonometric ratio,

[tex]tan \ \theta=\frac{opp}{adj}[/tex]

Substituting [tex]\theta=52^{\circ}[/tex], [tex]opp=QR[/tex] and [tex]adj=RP[/tex]

Thus, we get;

[tex]tan \ 52^{\circ}=\frac{QR}{RP}[/tex]

Substituting the values, we get;

[tex]1.2799=\frac{9.6}{RP}[/tex]

Simplifying, we get;

[tex]RP=\frac{9.6}{1.2799}[/tex]

Dividing, we get;

[tex]RP=7.5[/tex]

Thus, the length of RP is 7.5 feet.

Ver imagen vijayalalitha

Answer:

7.5

Step-by-step explanation: