At the instant shown, slider block B is moving with a constant acceleration, and its speed is 150 mm/s. Knowing that after slider block A has moved 240 mm to the right its velocity is 60 mm/s, determine (a) the accelerations of A and B, (b) the acceleration of portion D of the cable, (c) the velocity and change in position of slider block B after 4 s.

Respuesta :

Answer:

a) aA = - 13.33 mm/s²

aB = - 20 mm/s²

b) aD = - 13.33 mm/s²

c) vB = 70 mm/s

d) xB = 440 mm

Explanation:

Given

The initial speed of B is: v₀B = 150 mm/s

Distance moved by A is: xA = 240 mm

Velocity of A is: vA = 60 mm/s

Assuming:

Displacement of blocks are denoted by:

A = xA

B = xB

C = xC

D = xD

From the pic shown, the total length of the cable is:

xB + (xB - xA) + 2*(d - xA) = L

⇒ 2*xB - 3*xA = L - 2*d

where L - 2*d is constant. Differentiating the above equation with respect to time:

d(2*xB)/dt - d(3*xA)/dt = 0

⇒ 2*vB - 3*vA = 0    (i)

Substituting in equation (i)

2*(150 mm/s) - 3*vA = 0

⇒ v₀A = 100 mm/s  (initial speed of A)

Then, we use the equation

vA² = v₀A² + 2*aA*xA

Substituting the values in above equation:

(60 mm/s)² = (100 mm/s)² + 2*aA*(240 mm)

aA = - 13.33 mm/s²

If  2*vB - 3*vA = 0

Differentiating the above equation with respect to time:

d(2*vB)/dt - d(3*vA)/dt = 0

⇒ 2*aB - 3*aA = 0    (ii)

Substituting in equation (ii)

2*aB - 3*(- 13.33 mm/s²) = 0

aB = - 20 mm/s²

b) From the pic shown,

xD - xA = constant

If we apply

d(xD)/dt - d(xA)/dt = 0

⇒ vD - vA = 0

then

d(vD)/dt - d(vA)/dt = 0

⇒ aD - aA = 0

aD = aA = - 13.33 mm/s²

c) We use the formula

vB = v₀B + aB*t

Substituting the values in above equation:

vB = 150 mm/s + (- 20 mm/s²)*(4 s)

vB = 70 mm/s

d) We apply the equation

xB = v₀B*t + 0.5*aB*t²

Substituting the values in above equation:

xB = (150 mm/s)*(4 s) + 0.5*(- 20 mm/s²)*(4 s)²

xB = 440 mm

Ver imagen jolis1796