an object moves in simple harmonic motion with amplitude 13 m and period 3 minutes. At time t= 0 minutes, its displacement d from rest is -13 m, and initially it moves in a positive direction.

Respuesta :

Answer:

[tex]x(t) = (13\,m)\cdot \cos \left[\frac{2\pi}{3}\cdot t \pm \pi\right][/tex], where t is measure in minutes.

Step-by-step explanation:

The statement consists in the construction of the motion function for a object experimenting a simple harmonic motion. The expression for simple harmonic motion is:

[tex]x(t) = A\cdot \cos (\omega\cdot t + \phi)[/tex]

Where:

[tex]A[/tex] - Amplitude, in m.

[tex]\omega[/tex] - Angular frequency, in rad/s.

[tex]\phi[/tex] - Phase angle, in rad.

The angular frequency is:

[tex]\omega = \frac{2\pi}{T}[/tex]

[tex]\omega = \frac{2\pi}{180\,s}[/tex]

[tex]\omega = \frac{\pi}{90}[/tex]

The amplitude of the motion is 13 m and the phase angle is:

[tex](13\,m)\cdot \cos \phi = -13\,m[/tex]

[tex]\cos \phi = -1[/tex]

[tex]\phi = \pm\pi[/tex]

The position function for the object is:

[tex]x(t) = (13\,m)\cdot \cos \left[\frac{2\pi}{3}\cdot t \pm \pi\right][/tex], where t is measure in minutes.