Given:
m∠A = 48°
m∠B = (6x - 28)°
m∠C = (2x)°
To find:
The value of x and measures of angle B and angle C.
Solution:
Sum of all the angles of a triangle = 180°
m∠A + m∠B + m∠C = 180°
48° + 6x° - 28° + 2x° = 180°
20° + 8x° = 180°
Subtract 20° from both sides.
20° + 8x° - 20° = 180° - 20°
8x° = 160°
Divide by 8 on both sides.
[tex]$\frac{8x^\circ}{8} =\frac{160^\circ}{8}[/tex]
x° = 20°
The value of x is 20.
m∠B = (6(20) - 28)°
= (120 - 28)°
= 92°
The measure of angle B is 92°.
m∠C = (2x)°
= (2 × 20)°
= 40°
The measure of angle C is 40°.