Respuesta :

Given:

m∠A = 48°

m∠B = (6x - 28)°

m∠C = (2x)°

To find:

The value of x and measures of angle B and angle C.

Solution:

Sum of all the angles of a triangle = 180°

m∠A + m∠B + m∠C = 180°

48° + 6x° - 28° + 2x° = 180°

20° + 8x° = 180°

Subtract 20° from both sides.

20° + 8x° - 20° = 180° - 20°

8x° = 160°

Divide by 8 on both sides.

[tex]$\frac{8x^\circ}{8} =\frac{160^\circ}{8}[/tex]

x° = 20°

The value of x is 20.

m∠B = (6(20) - 28)°

        = (120 - 28)°

        = 92°

The measure of angle B is 92°.

m∠C = (2x)°

        = (2 × 20)°

        = 40°

The measure of angle C is 40°.