Respuesta :
Answer:
∴ The the surface area of the wall is [tex]190x^{2} \ square\ unit[/tex].
Step-by-step explanation:
Given that,
The length of rectangular wall is [tex]10x[/tex].
The width of rectangular wall is [tex]20x.[/tex]
The length of doorway is [tex]5x.[/tex]
The width of doorway is [tex]2x.[/tex]
and, we have to find the surface area of rectangular wall.
Now,
The length of rectangular wall is [tex]10x[/tex].
The width of rectangular wall is [tex]20x.[/tex]
∴ Total surface area of a rectangular wall [tex]= Length\ of\ wall\times Width\ of\ wall[/tex]
[tex]= 10x\times 20x[/tex]
[tex]=[/tex] [tex]200x^{2} \ square\ unit[/tex]
Total surface area of a rectangular wall is [tex]200x^{2} \ square\ unit[/tex].
Again, The length of doorway is [tex]5x.[/tex]
The width of doorway is [tex]2x.[/tex]
∴Total surface area of doorway [tex]=Lenght\ of\ doorway\times Width\ of\ doorway[/tex]
[tex]=5x\times 2x[/tex]
[tex]=10x^{2} \ square\ unit[/tex]
Total surface area of doorway is [tex]10x^{2} \ square\ unit[/tex].
∴The remaining surface area of a rectangular wall is [tex]=[/tex] [tex]200x^{2} -10x^{2}[/tex]
[tex]=190x^{2} \ square\ unit[/tex]
∴ The the surface area of the wall is [tex]190x^{2} \ square\ unit[/tex].