Answer:
The values are:
[tex]I_{o} =0.06+j0.045A[/tex]
[tex]I_{1} =0.3+j0.225A[/tex]
[tex]V_{o} =12+j9V[/tex]
Explanation:
the attached figure shows the diagram. The equation is the following:
[tex]I_{1} -I_{o} =\frac{V_{o} }{50} \\I_{1} -I_{o} -\frac{V_{o} }{50}=0[/tex] (eq. 1)
Voltage across the 40 Ω is equal:
[tex]V_{o} =40I_{1}[/tex] (eq. 2)
Applying the Kirchhoff´s voltage law:
[tex]75=I_{o} (600+j150)+I_{1} (40-j150)[/tex] (eq. 3)
Equation 1 and 2:
[tex]I_{1} =5I_{o}[/tex] (eq. 4)
Substituting in eq. 3
[tex]75=I_{o} (600+j150)+5I_{o} (40-j150)\\75=I_{o} (800-j600)\\I_{o} =\frac{75}{800-j600} =0.06+j0.045A[/tex]
Substituting in eq. 4
[tex]I_{1} =0.3+j0.225A[/tex]
Substituting in eq. 2:
[tex]V_{o} =12+j9V[/tex]