Find the area of the regular polygon. Round to the nearest tenth.

Given:
Side length = 12 in
To find:
The area of the regular polygon.
Solution:
Number of sides (n) = 6
Let us find the apothem using formula:
[tex]$a=\frac{s}{2 \tan \left(\frac{180^\circ}{n}\right)}[/tex]
where s is side length and n is number of sides.
[tex]$a=\frac{12}{2 \tan \left(\frac{180^\circ}{6}\right)}[/tex]
[tex]$a=\frac{6}{ \tan (30^\circ)}[/tex]
[tex]$a=\frac{6}{ \frac{1}{\sqrt{3} }}[/tex]
[tex]$a=6\sqrt{3}[/tex]
Area of the regular polygon:
[tex]$A=\frac{1}{2}(\text { Perimeter })(\text { apothem })$[/tex]
[tex]$A=\frac{1}{2}(6 \times 12)(6\sqrt{3} )[/tex]
[tex]$A=\frac{1}{2}(72)(6\sqrt{3} )[/tex]
[tex]A=216 \sqrt{3}[/tex]
[tex]A=374.1[/tex] in²
The area of the regular polygon is 374.1 in².
The area of the regular polygon(hexagon) with side length of 12 inches is 1971.9 inches square.
An hexagon is a polygon with 6 sides. The polygon has 6 side with side length of 12 inches. Therefore, the area of the polygon can be found as follows:
area of the hexagon = ns / 4 tan (π / n)
where
Therefore,
n = 6
s = 12 inches
area of the hexagon = 6 × 12 / 4 tan (3.14 / 6)
area of the hexagon = 72 / 4 tan 0.52333333333
area of the hexagon = 72 / 0.03651330207
area of the hexagon = 1971.88421753
area of the hexagon = 1971.9 inches²
learn more on hexagon here: https://brainly.com/question/21629405