Given two functions j(x)=−6x+2 and k(x)=2+4x , what is the function rule for (kj)(x) ? (kj)(x)=−24x2+4x+4 (kj)(x)=24x2−4x+4 (kj)(x)=24x2−4x−4 (kj)(x)=−24x2−4x+4

Respuesta :

Answer:

Value of function [tex]\left (kj\right)\left(x\right)[/tex] is [tex]-24x^2-4x+4[/tex]

Step-by-step explanation:

The function [tex]\left (kj\right)\left(x\right)[/tex] can be written as,

[tex]\left (kj\right)\left(x\right)=k\left(x\right)\times j\left(x\right)[/tex]

Now, [tex]k\left(x\right)=2+4x[/tex] and[tex]j\left(x\right)=-6x+2[/tex]

Substituting the value,

[tex]\left (kj\right)\left(x\right)=\left(2+4x\right)\times \left(-6x+2\right)[/tex]

Applying FOIL method,

[tex]2\left(-6x+2\right)+4x\left(-6x+2\right)[/tex]

Now apply distributive property,

[tex]2\left(-6x\right)+2\left(2\right)+4x\left(-6x\right)+4x\left(2\right)[/tex]

Simplifying,

Since product of negative number and positive number is always negative number.

[tex]-12x+4-24x^{2}+8x[/tex]

Combining like terms,

[tex]4-24x^{2}+8x-12x[/tex]

[tex]4-24x^{2}-4x[/tex]

Rearranging,

[tex]-24x^{2}-4x+4[/tex]

Hence the value of the function according to given rule is [tex]-24x^{2}-4x+4[/tex].

Otras preguntas