Respuesta :
Answer:
Value of function [tex]\left (kj\right)\left(x\right)[/tex] is [tex]-24x^2-4x+4[/tex]
Step-by-step explanation:
The function [tex]\left (kj\right)\left(x\right)[/tex] can be written as,
[tex]\left (kj\right)\left(x\right)=k\left(x\right)\times j\left(x\right)[/tex]
Now, [tex]k\left(x\right)=2+4x[/tex] and[tex]j\left(x\right)=-6x+2[/tex]
Substituting the value,
[tex]\left (kj\right)\left(x\right)=\left(2+4x\right)\times \left(-6x+2\right)[/tex]
Applying FOIL method,
[tex]2\left(-6x+2\right)+4x\left(-6x+2\right)[/tex]
Now apply distributive property,
[tex]2\left(-6x\right)+2\left(2\right)+4x\left(-6x\right)+4x\left(2\right)[/tex]
Simplifying,
Since product of negative number and positive number is always negative number.
[tex]-12x+4-24x^{2}+8x[/tex]
Combining like terms,
[tex]4-24x^{2}+8x-12x[/tex]
[tex]4-24x^{2}-4x[/tex]
Rearranging,
[tex]-24x^{2}-4x+4[/tex]
Hence the value of the function according to given rule is [tex]-24x^{2}-4x+4[/tex].