Respuesta :

Answer:

We get the value of [tex]Sin B=0.45[/tex] in radians which is equal to [tex]0.15\pi[/tex]

Step-by-step explanation:

Given that,

[tex]Sin B=0.45[/tex]

To find:- find angle B in Radians.

So,    

To find the Angle B needs to take [tex]Sin^{-1}[/tex]. Sin has a range [tex][-1,1][/tex] for  all [tex]\theta[/tex][tex]R[/tex].

                            [tex]Sin B=0.45[/tex]

                                  [tex]B=Sin^{-1} (0.45)[/tex]

                                  [tex]B=26.74[/tex]

Thus angle  [tex]B=26.74[/tex] is in degree.

Here,       converting the degree into radian we find,

                           [tex]Radian = degree \times \frac{\pi}{180}[/tex]

     ⇒                  [tex]B= 26.74 \times \frac{\pi}{180}\ Rad[/tex]

     ⇒                  [tex]B = 0.15\pi\ Rad[/tex]

Therefore,

We get the value of [tex]Sin B=0.45[/tex] in radians which is equal to [tex]0.15\pi[/tex].