Answer:
We get the value of [tex]Sin B=0.45[/tex] in radians which is equal to [tex]0.15\pi[/tex]
Step-by-step explanation:
Given that,
[tex]Sin B=0.45[/tex]
To find:- find angle B in Radians.
So,
To find the Angle B needs to take [tex]Sin^{-1}[/tex]. Sin has a range [tex][-1,1][/tex] for all [tex]\theta[/tex]∈[tex]R[/tex].
[tex]Sin B=0.45[/tex]
[tex]B=Sin^{-1} (0.45)[/tex]
[tex]B=26.74[/tex]
Thus angle [tex]B=26.74[/tex] is in degree.
Here, converting the degree into radian we find,
[tex]Radian = degree \times \frac{\pi}{180}[/tex]
⇒ [tex]B= 26.74 \times \frac{\pi}{180}\ Rad[/tex]
⇒ [tex]B = 0.15\pi\ Rad[/tex]
Therefore,
We get the value of [tex]Sin B=0.45[/tex] in radians which is equal to [tex]0.15\pi[/tex].