Given that secant theta = Negative StartFraction 37 Over 12 EndFraction, what is the value of cotangent theta, for StartFraction pi Over 2 EndFraction less-than theta less-than pi? Negative StartFraction 35 Over 12 EndFraction Negative StartFraction 12 Over 35 EndFraction StartFraction 12 Over 35 EndFraction StartFraction 35 Over 12 EndFraction

Respuesta :

Answer:

B) -12/35

Step-by-step explanation:

The value of [tex]\tan(\theta)[/tex] is -35/12

What are trigonometry ratios?

Trigonometry ratios are used to determine the sides and angles in a right triangle

The trigonometry ratio is given as:

[tex]\sec(\theta) = -\frac{37}{12}[/tex]

Calculate the cosine of the angle

[tex]\cos(\theta) = -\frac{12}{37}[/tex]

Calculate the sine of the angle using

[tex]\sin(\theta) = \sqrt{1 - \cos^2(\theta)}[/tex]

So, we have:

[tex]\sin(\theta) = \sqrt{1 - (-12/37)^2}[/tex]

[tex]\sin(\theta) = \sqrt{1 - (144/1369}[/tex]

Evaluate

[tex]\sin(\theta) = \pm\sqrt{\frac{1225}{1369}}[/tex]

Evaluate

[tex]\sin(\theta) = \pm\frac{35}{37}[/tex]

The sine of an angle is positive between [tex]\pi/2[/tex] and [tex]\pi[/tex].

So, we have:

[tex]\sin(\theta) = \frac{35}{37}[/tex]

The tangent is then calculated as:

[tex]\tan(\theta) = \sin(\theta) \div \cos(\theta)[/tex]

This gives

[tex]\tan(\theta) = \frac{35}{37} \div \frac{-12}{37}[/tex]

Divide

[tex]\tan(\theta) = -\frac{35}{12}[/tex]

Hence, the value of [tex]\tan(\theta)[/tex] is -35/12

Read more about trigonometry ratios at:

https://brainly.com/question/10417664