Which domain restrictions apply to the rational expression? Select all that apply.


x2+x+6x2+2x−3

Question 1 options:


x ≠ -3



x ≠ -2



x ≠ -1



x ≠ 1

Respuesta :

Answer:

x ≠ -3

and

x ≠ 1

Step-by-step explanation:

the rational expression is:

[tex]\frac{x^2+x+6}{x^2+2x-3}[/tex]

a domain restriction will be when the denominator is equal to zero:

[tex]x^2+2x-3=0[/tex]

so we must find the two values of x that makes the expreesion for the denominator equal to zero.

we can do this by factoring:

[tex]x^2+2x-3=(x+3)(x-1)=0[/tex]

and now we use the zero factor property, which means that if

[tex](x+3)(x-1)=0[/tex]

we have two solutions:

[tex]x+3=0\\x=-3[/tex]

and

[tex]x-1=0\\x=1[/tex]

thus, when [tex]x=-3[/tex] or [tex]x=1[/tex] the denominator is zero. so in the domain we cannot have [tex]x=-3[/tex] or [tex]x=1[/tex] .

So the domain restrictions are:

x ≠ -3

and

x ≠ 1