An arc subtends a central angle measuring \dfrac{\pi}{2}
2
π

start fraction, pi, divided by, 2, end fraction radians.
What fraction of the circumference is this arc?
of the circumference

Respuesta :

Arc Length is 1/4th of the circumference .

Step-by-step explanation:

Here we need to find fraction of the circumference is this arc when An arc subtends a central angle measuring [tex]\dfrac{\pi}{2}[/tex] radians ! Let's find out :

We know that circumference of an arc subtending a central angle of x is :

⇒ [tex]Arc = \frac{Angle}{360}(2\pi r)[/tex]

⇒ [tex]Arc = \dfrac{\frac{\pi}{2}}{360}(2\pi r)[/tex]

⇒ [tex]Arc = \frac{90}{360}(2\pi r)[/tex]

⇒ [tex]Arc = \frac{90}{90(4)}(2\pi r)[/tex]

⇒ [tex]Arc = \frac{1}{4}(2\pi r)[/tex]

⇒ [tex]Arc = \frac{1}{4}(Circumference)[/tex]

Therefore , Arc Length is 1/4th of the circumference .

Answer:

It is 1/4th of the circumference

Step-by-step explanation:

It is the correct answer on khan academy