Respuesta :
Arc Length is 1/4th of the circumference .
Step-by-step explanation:
Here we need to find fraction of the circumference is this arc when An arc subtends a central angle measuring [tex]\dfrac{\pi}{2}[/tex] radians ! Let's find out :
We know that circumference of an arc subtending a central angle of x is :
⇒ [tex]Arc = \frac{Angle}{360}(2\pi r)[/tex]
⇒ [tex]Arc = \dfrac{\frac{\pi}{2}}{360}(2\pi r)[/tex]
⇒ [tex]Arc = \frac{90}{360}(2\pi r)[/tex]
⇒ [tex]Arc = \frac{90}{90(4)}(2\pi r)[/tex]
⇒ [tex]Arc = \frac{1}{4}(2\pi r)[/tex]
⇒ [tex]Arc = \frac{1}{4}(Circumference)[/tex]
Therefore , Arc Length is 1/4th of the circumference .
Answer:
It is 1/4th of the circumference
Step-by-step explanation:
It is the correct answer on khan academy