What is the area of the trapezoid shown below?

Answer:
180 square units
Step-by-step explanation:
[tex]Height \: of \: trapezoid \\ h = \sqrt{ {25}^{2} - {7}^{2} } \\ = \sqrt{625 - 49} \\ = \sqrt{576} \\ h = 24 \: units \\ \\ b_1 = 4 \:units \\ b_2 = 7 + 4 = 11 \:units \\ \\ Area \: of \: trapezoid \\ = \frac{1}{2} (b_1 + b_2) \times h \\ \\ = \frac{1}{2} (4 + 11) \times 24 \\ = 15 \times 12 \\ \red{ \boxed{ \bold{area \: of \: trapezoid = 180 \: {units}^{2}}}} \\[/tex]
we will use Pythagoras theorum to find out area of that right angled triangle .
Base = 7units
hypotenuse = 25units
perpendicular= ?
Pythagoras theorem = >
base²+perpendicular ²= hypotenuse ²
(7)²+(p)²= (25)²
49+(p)²=625
(p)²= 625-49
(p)²=576
p = 24units
area of triangle =
[tex] \frac{1}{2}h+b[/tex]
[tex] \frac{1}{2} 24+7[/tex]
area of triangle = 31units ²
length of rectangle = 24units
breadth= 4units
area of rectangle = l×b
area of rectangle = 4×24
area of rectangle = 28 units .
so total area = area of triangle + area of rectangle
= 31+28
answer = 59units²