Vector & Magnitude is (1,-9) & 9.0854 respectively! Correct option is
D) (1, -9), 182 * 9.0854
Step-by-step explanation:
Here we have , We have to Identify the ordered pair that represents the vector from A(1,6) to B(2, -3) and the magnitude of AB . Let's find out:
Vector that represents from A(1,6) to B(2, -3) is given by :
⇒ [tex]AB = (2-1) i + (-3-6)j[/tex]
⇒ [tex]AB = i -9j[/tex] or ,
⇒ [tex]AB = (1,-9)[/tex]
Now , Magnitude of vector AB is :
⇒ [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
⇒ [tex]\sqrt{(2-1)^2+(-3-6)^2}[/tex]
⇒ [tex]\sqrt{(1)^2+(-9)^2}[/tex]
⇒ [tex]\sqrt{82}[/tex]
⇒ [tex]9.0854[/tex]
Therefore , Vector & Magnitude is (1,-9) & 9.0854 respectively! Correct option is D) (1, -9), 182 * 9.0854