Answer:
The center velocity of both gears is same & equal to 2034.72 [tex]\frac{cm}{min}[/tex]
Step-by-step explanation:
Given data
[tex]R_1[/tex] = 5 cm
[tex]R_2[/tex] = 3 cm
[tex]N_2 =[/tex] 36 rev in 20 sec
[tex]\omega_2 = 2 \pi N_2[/tex]
[tex]\omega_2[/tex] = 2 × 3.14 × 1.8
[tex]\omega_2[/tex] = 11.304 [tex]\frac{rad}{s}[/tex]
We know that for the set of gears
[tex]R_1\omega_1 = R_2\omega_2[/tex]
[tex]5 \omega_1 =[/tex] 3 × 11.304
[tex]\omega_1[/tex] = 6.7824 [tex]\frac{rad}{s}[/tex]
liner velocity of the first gear
[tex]V_1 = R_1 \omega_1[/tex]
[tex]V_1 =[/tex] 5 × 6.7824
[tex]V_1 =[/tex] 33.912 [tex]\frac{cm}{s}[/tex]
[tex]V_1 =[/tex] 20.34.72 [tex]\frac{cm}{min}[/tex]
liner velocity of the second gear
[tex]V_{2} = R_2 \omega_2[/tex]
[tex]V_2 =[/tex] 3 × 11.304
[tex]V_2 =[/tex] 2034.72 [tex]\frac{cm}{min}[/tex]
Therefore the center velocity of both gears is same & equal to 2034.72 [tex]\frac{cm}{min}[/tex]