Answer: The pressure in torr is 461 torr
Explanation:
To calculate the relation of density and molar mass of a compound, we use the ideal gas equation:
PV=nRT
P = pressure
V = Volume
n = number of moles
R = gas constant = 0.0821 Latm/Kmol
T = temperature =[tex]-145^0C=(273-145)K=128K[/tex]
Number of moles (n) can be written as:
[tex]n=\frac{m}{M}[/tex]
where, m = given mass
M = molar mass = 44 g/mol
[tex]PV=\frac{m}{M}RT\\\\PM=\frac{m}{V}RT[/tex]
where,
[tex]\frac{m}{V}=d[/tex]
where d = density = 2.54 g/L
The relation becomes:
PM=dRT
[tex]P=\frac{dRT}{M}[/tex]
[tex]P=\frac{2.54\times 0.0821\times 128}{44}=0.607atm[/tex]
[tex]P=461torr[/tex] (760torr=1atm)
Thus the pressure in torr is 461 torr