Respuesta :
Answer:
T2 = 1680,4 days
Explanation:
Kepplers law:
[tex]\frac{T^{2} }{a^{3} } = constant[/tex]
For Earth:
T1 = 365 days ; a1 = 149 597 870 700 m
For Ceres:
T2 = ? days ; a1 = [tex]414*10^{9} m[/tex]
Then:
[tex]\frac{T1^{2} }{a1^{3} } = \frac{T2^{2} }{a2^{3} } ----> T2 = T1*\sqrt{\frac{a2^{3}}{a1^{3}}}[/tex]
Replacing values:
T2 = 1680,4 days
Answer:
Answer is 1.156x10^23 sec
Explanation:
According to kepler's law, the square of the period of revolution is proportional to the cube of the distance within planets.
At a distance r of 414 million kilometers I.e 414x10^6 km, period calculation is shown in the image below.
