Respuesta :

Given:

Right triangle with one angle 45°

To find:

The value of q and r.

Solution:

Opposite to θ = 16

Adjacent to θ = r

Hypotenuse = q

Using trigonometric ratio formula:

[tex]$\tan \theta =\frac{\text{Opposite side to } \theta}{\text{Adjacent to } \theta}[/tex]

[tex]$\tan 45^\circ =\frac{16}{r}[/tex]

The value of tan 45° = 1

[tex]$1 =\frac{16}{r}[/tex]

Do cross multiplication, we get

r = 16

Using trigonometric ratio formula:

[tex]$\sin \theta =\frac{\text{Opposite side to } \theta}{\text{Hypotenuse}}[/tex]

[tex]$\sin 45^\circ =\frac{16}{q}[/tex]

The value of sin 45° = [tex]\frac{1}{\sqrt{2} }[/tex].

[tex]$\frac{1}{\sqrt{2} } =\frac{16}{q}[/tex]

Do cross multiplication, we get

[tex]q=16\sqrt{2}[/tex]

The value of r is 16 and the value of q is [tex]16 \sqrt{2}[/tex].