Respuesta :

Answer:

Option A.

Step-by-step explanation:

Given question is incomplete: please find the question in the attachment.

Area of quadrilateral ABDF = Area of AECD - Area of ΔBCD - Area of ΔDEF,

Since, area of AECD = (AC × AE)

Area of ΔBCD = [tex]\frac{1}{2}(BC\times CD)[/tex]

Area of ΔDEF = [tex]\frac{1}{2}(EF\times ED)[/tex]

= (AC × AE) - [tex]\frac{1}{2}(BC\times CD) - \frac{1}{2}(EF\times ED)[/tex]

= (32 × 20) - [tex]\frac{1}{2}(16\times 20) - \frac{1}{2}(10\times 32)[/tex]

= 640 - 160 - 160

= 640 - 320

= 320 square unit

Therefore, Option A is the correct option.

Ver imagen eudora