Answer:
Option A.
Step-by-step explanation:
Given question is incomplete: please find the question in the attachment.
Area of quadrilateral ABDF = Area of AECD - Area of ΔBCD - Area of ΔDEF,
Since, area of AECD = (AC × AE)
Area of ΔBCD = [tex]\frac{1}{2}(BC\times CD)[/tex]
Area of ΔDEF = [tex]\frac{1}{2}(EF\times ED)[/tex]
= (AC × AE) - [tex]\frac{1}{2}(BC\times CD) - \frac{1}{2}(EF\times ED)[/tex]
= (32 × 20) - [tex]\frac{1}{2}(16\times 20) - \frac{1}{2}(10\times 32)[/tex]
= 640 - 160 - 160
= 640 - 320
= 320 square unit
Therefore, Option A is the correct option.