Answer:
Absolute minimum value: 7
Absolute maximum value: 351
Step-by-step explanation:
Absolute Maxima and Minima of Functions
The procedure to find the extreme values of a function in a given interval is:
Let the function be
[tex]f(x)=7+54x+2x^3[/tex]
In the interval [0,4]
Compute the first derivative
[tex]f'(x)=54+6x^2[/tex]
Equating to 0
[tex]54+6x^2=0[/tex]
Solving
[tex]x^2=-9[/tex]
We can find no real solutions to the above equation and therefore there are no critical points. The only possible extreme values will come from the endpoints. Thus
[tex]f(0)=7+54(0)+2(0)^3=7[/tex]
[tex]f(4)=7+54(4)+2(4)^3=351[/tex]
Absolute minimum value: 7
Absolute maximum value: 351