Answer:
[tex]-1.08\times 10^{23} mol/s[/tex]
Explanation:
We are given that
Diffusion coefficient,[tex]D=1.5\times 10^{-18} m^2/s[/tex]
Thickness of membrane,[tex]dx=12nm=12\times 10^{-9} m[/tex]
[tex]1 nm=10^{-9} m[/tex]
Area,[tex]A=12\times 12=144nm^2=144\times 10^{-18} m^2[/tex]
Concentration differences,[tex]dc=0.60 mol/dm^3=0.60\times 1000=600mol/m^3[/tex]
We have to find the flow rate of sodium ions.
Flow rate,[tex]\frac{dn}{dt}=-DA\frac{dc}{dx}[/tex]
Using the formula
[tex]\frac{dn}{dt}=-\frac{1.5\times 10^{-18}\times (144\times 10^{-18})\times 600}{12\times 10^{-9}}=-1.08\times 10^{23} mol/s[/tex]
[tex]\frac{dn}{dt}=-1.08\times 10^{23} mol/s[/tex]