Answer:
critical stress [tex]\sigma _c[/tex] = 1382.67 MPa
Explanation:
given data
plane strain fracture toughness = 54.8 MP
length of surface creak = 0.5 mm
we take here
parameter Y = 1.0
solution
we apply critical stress formula that is
critical stress [tex]\sigma _c[/tex] = [tex]\frac{K}{Y\sqrt{\pi \times a} }[/tex] .............................1
here K is design stress plane strain fracture toughness and a is length of surface creak so put all these value in equation 1
critical stress [tex]\sigma _c[/tex] = [tex]\frac{54.8 \times 10^6}{1 \sqrt{\pi \times 5 \times 106{-4}}}[/tex]
solve it we get
critical stress = 1382.67 MPa
As exposed stress 1030 MPa is less than critical stress 1382 MPa
so that fracture will not be occur here