Answer:
Rate of change of volume of the pile [tex]= 54\pi[/tex]
Explanation:
Given -
Rate of increase of the base of the pile [tex]= 0.75[/tex] inches per minute
Height of the pile [tex]= 2 *[/tex] the radius of the base
Let "h" be the height of the pile and "r" be the radius of the base.
Then [tex]h = 2* r[/tex]
Radius "r" [tex]= 6[/tex] inches
Rate of change of radius i.e
[tex]\frac{dr}{dt} = 0.75[/tex]
Volume of conical pile
[tex]\frac{\pi }{3} * r^2 * h\\= \frac{\pi }{3} * r^2 * 2 * r\\= \frac{\pi }{3} *2* r^3[/tex]
Change in volume of conical pile
[tex]\frac{dV}{dt} = \frac{dr}{dt} * \frac{6* \pi * r^2 }{3}[/tex]
Substituting the value of rate of change of radius, we get -
[tex]\frac{dV}{dt} = 2 * \pi * (6^2) * (0.75)\\\frac{dV}{dt} = 54 \pi[/tex]
Rate of change of volume of the pile [tex]= 54\pi[/tex]