Answer:
The intensity of sound wave at the surface of the sphere [tex]I = \frac{ 2\pi^{2}R^{2} f^{2}\sqrt{\rho B}(\triangle R)^{2}}{ d^{2} }[/tex]
Explanation:
B = Bulk modulus
Intensity, [tex]I = \frac{P_{max} ^{2} }{2\sqrt{\rho B} }[/tex]
The amplitude of oscillation of the sphere is given by:
[tex]P_{max} = BkA\\k = \frac{2\pi }{\lambda} \\[/tex]
[tex]A = \triangle R\\[/tex]
Substitute v and A into Pmax
[tex]P_{max} = (2\pi f)\sqrt{\rho B} \triangle R\\ P_{max} ^{2} = 4\pi^{2} *f^{2} \rho B (\triangle R)^{2}[/tex]
[tex]I = \frac{ 4\pi^{2} f^{2} \rho B (\triangle R)^{2}}{2\sqrt{\rho B} }[/tex]
[tex]P_{total} = 4\pi R^{2} I[/tex]
[tex]P_{total} =4\pi R^{2} \frac{ 2\pi^{2} f^{2} \rho B (\triangle R)^{2}}{\sqrt{\rho B} }[/tex]
The intensity of the sound wave at a distance is given by:
[tex]I = \frac{P_{total} }{4\pi d^{2} }[/tex]
[tex]I = 4\pi R^{2} \frac{ 2\pi^{2} f^{2} \rho B (\triangle R)^{2}}{\sqrt{\rho B} } * \frac{1}{4\pi d^{2} } \\I = \frac{ 2\pi^{2}R^{2} f^{2}\sqrt{\rho B}(\triangle R)^{2}}{ d^{2} }[/tex]