A simply supported steel shaft of length L = 37 in is loaded with a uniform distributed load w = 6.5 lbf/in and a point load PA = 350 lbf located at a distance a = 11 in from the left end. Using singularity functions, find the deflections at A and at midspan. Note the percent difference between these two values.

Respuesta :

Answer:

The deflection at  A is 1.93×10⁻⁵ in and

The deflection at the midspan is 2.24×10⁻⁵ in

The percentage difference is 15.11 %

Explanation:

Here we have

Taking moments about the right end

350 × 26 + 6.5 × 37²/2 = 13549.25 = R₁×37

R₁ = 13549.25 /37 = 366.2 lbf

Weight of steel shaft=  6.5 × 37 = 240.5 lbf

Total downward force = 350 + 240.5 = 590.5 lbf

∴ R₂ = 590.5 lbf - 366.2 lbf = 224.3 lbf

The bending moment equations are

[tex]EI\frac{d^2y}{dx^2} = M = R_1[x] - 350[x-11]-\frac{wx^2}{2}[/tex]

[tex]EI\frac{d^2y}{dx^2} = M = 366.2 \cdot [x] - 350[x-11]-\frac{6.5\cdot x^2}{2}[/tex]

By integrating once we have

[tex]EI\frac{dy}{dx} = 366.2 \cdot \frac{ [x]^2}{2} - 350\cdot \frac{ [x-11]^2}{2}-\frac{6.5\cdot x^3}{6} + C[/tex]..................(1)

Second integration gives

[tex]EIy= 366.2 \cdot \frac{ [x]^3}{6} - 350\cdot \frac{ [x-11]^3}{6}-\frac{6.5\cdot x^4}{24} + Cx + B[/tex]......................(2)

The boundary conditions are, at x = 0, y = 0 and at x = 37. y = 0

From equation 2 we have at x = 0

[tex]EI(0)= 366.2 \cdot \frac{ [0]^3}{6} - 350\cdot \frac{ [0-11]^3}{6}-\frac{6.5\cdot 0^4}{24} + C0 + B[/tex]

Which gives  0 - 0 - 0 + 0 + B Since we ignore the bracket  with negative value

When x = 37, equation 2 becomes

[tex]EI(0) = 366.2 \cdot \frac{ [37]^3}{6} - 350\cdot \frac{ [37-11]^3}{6}-\frac{6.5\cdot 37^4}{24} + C\cdot 37 + B[/tex]

[tex]EI(0) = 3091521.433- 1025266.67-507585.27 + C\cdot 37[/tex]

37·C = -1558669.5

C = -42126.2

Therefore we have

[tex]EIy= 366.2 \cdot \frac{ [x]^3}{6} - 350\cdot \frac{ [x-11]^3}{6}-\frac{6.5\cdot x^4}{24} -42126.2\cdot x[/tex]

When x = A = 11 in, we have

[tex]EIy= 366.2 \cdot \frac{ [11]^3}{6} - 350\cdot \frac{ [11-11]^3}{6}-\frac{6.5\cdot 11^4}{24} -42126.2\cdot 11[/tex]

= -386118.133    

y[tex]_{11}[/tex] = -386118.133 /EI  = -386118.133 /(200×10⁸ lbf·in²) = -1.93×10⁻⁵ in or 1.93×10⁻⁵ in

At the midspan, we have x = 37/2 in = 18.5

[tex]EIy= 366.2 \cdot \frac{ [18.5]^3}{6} - 350\cdot \frac{ [18.5-11]^3}{6}-\frac{6.5\cdot 18.5^4}{24} -42126.2\cdot 18.5[/tex]

EIy = -449228.023 lbf·in⁴

[tex]y_{(mid \, span)}[/tex] =  -449228.023 lbf·in⁴/(200×10⁸ lbf·in²) = -2.24×10⁻⁵ in or

2.24×10⁻⁵ in

The percentage difference is

[tex]\% \,Difference = \frac{Difference}{\frac{New\,Value+Initial \,Value}{2} } \times 100 =\frac{2.24-1.93}{\frac{1.93+2.24}{2} } \times 100[/tex] = 0.1511×100 = 15.11 %.