Find parametric equations for the path of a particle that moves along the circle x2 + (y − 1)2 = 16 in the manner described. (Enter your answer as a comma-separated list of equations. Let x and y be in terms of t.) (a) Once around clockwise, starting at (4, 1). 0 ≤ t ≤ 2π. (b) Two times around counterclockwise, starting at (4, 1). 0 ≤ t ≤ 4π. (c) Halfway around counterclockwise, starting at (0, 5). 0 ≤ t ≤ π.

Respuesta :

Answer:

a) [tex]x = 4\cdot \cos t[/tex], [tex]y = 1 + 4\cdot \sin t[/tex], b) [tex]x = 4\cdot \cos t[/tex], [tex]y = 1 + 4\cdot \sin t[/tex], c) [tex]x = 4\cdot \cos \left(t+\frac{\pi}{2} \right)[/tex], [tex]y = 1 + 4\cdot \sin \left(t + \frac{\pi}{2} \right)[/tex].

Step-by-step explanation:

The equation of the circle is:

[tex]x^{2} + (y-1)^{2} = 16[/tex]

After some algebraic and trigonometric handling:

[tex]\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = 1[/tex]

[tex]\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = \cos^{2} t + \sin^{2} t[/tex]

Where:

[tex]\frac{x}{4} = \cos t[/tex]

[tex]\frac{y-1}{4} = \sin t[/tex]

Finally,

[tex]x = 4\cdot \cos t[/tex]

[tex]y = 1 + 4\cdot \sin t[/tex]

a) [tex]x = 4\cdot \cos t[/tex], [tex]y = 1 + 4\cdot \sin t[/tex].

b) [tex]x = 4\cdot \cos t[/tex], [tex]y = 1 + 4\cdot \sin t[/tex].

c) [tex]x = 4\cdot \cos t''[/tex], [tex]y = 1 + 4\cdot \sin t''[/tex]

Where:

[tex]4\cdot \cos t' = 0[/tex]

[tex]1 + 4\cdot \sin t' = 5[/tex]

The solution is [tex]t' = \frac{\pi}{2}[/tex]

The parametric equations are:

[tex]x = 4\cdot \cos \left(t+\frac{\pi}{2} \right)[/tex]

[tex]y = 1 + 4\cdot \sin \left(t + \frac{\pi}{2} \right)[/tex]