Suppose the cost of publishing x books is C(x) = 10000 + 25[tex]\sqrt{x}[/tex], find the marginal cost at x=100 by using the derivative. Compare this with the difference C(101) - C(100).

Respuesta :

Answer:

[tex]\frac{dC}{dQ} \approx 1.25[/tex], [tex]C(101)-C(100) = 1.247[/tex], [tex]\delta = 0.24\,\%[/tex]

Step-by-step explanation:

The marginal cost function is:

[tex]\frac{dC}{dQ} = 12.5\cdot x^{-\frac{1}{2} }[/tex]

The marginal cost for 100 books is:

[tex]\frac{dC}{dQ} \approx 1.25[/tex]

The difference is:

[tex]C(101)-C(100) = 25\cdot (101^{\frac{1}{2} }-100^{\frac{1}{2} })[/tex]

[tex]C(101)-C(100) = 1.247[/tex]

The relative error is:

[tex]\delta = \frac{|1.25-1.247|}{1.25}\times 100\,\%[/tex]

[tex]\delta = 0.24\,\%[/tex]