Respuesta :
Answer:
219 sheets
Explanation:
D = 5000 per year,
d = daily demand = 5000/365 = 13.70 sheets
T = time between orders (review) = 14 days
L = Lead time = 10 days
σd= Standard deviation of daily demand = 5 per day
I = Current Inventory = 150 sheets Service Level
P = 95% (Probability of not stocking out) q=d(L+D)z σ T+L-1
σ T+L-1= square root (T+L)=5 square root 14+10= 24.495
From Standard normal distribution, z = 1.64 for 95% Service Level (or 5% Stock out)
q=13.70*(14+10)+1.64(24.495)-150
= 218.97 →219 sheets
Answer: 218.97
Explanation:
Demand(D) = 5000 per year
daily demand(d) = 5000/365 = 13.70
orders interval(t) = 14 days
Lead time(l) = 10 days
Standard deviation(SD) = 5 per day
Current Inventory(I) = 150 sheets
Service Level (P) = 95% (Probability of not stocking out)
From Standard normal distribution,
At 95% Service Level (5% Stock out)
z = 1.64
SDt + l = 5× sqrt(14 + 10) = 24.495
Q = d × (t + l) + z × (SDt + l) - I
Q = 13.70 ×(14 + 10) + 1.64×(24.495) - 150
Q = (13.70 × 24) + 40.17 - 150
Q = 328.8 + 40.17 - 150
Q = 368.97 - 150 = 218.97 sheets