Answer:
Therefore
[tex]det(A)*det(A^{-1}) = 1[/tex] and [tex]det(A^{-1}) = 1/det(A)[/tex]
Step-by-step explanation:
Remember that if
[tex]I[/tex] = Identity Matrix
then [tex]det(I)=1[/tex].
Also remember that for any invertible matrix
[tex]A*A^{-1} = I =[/tex]Identity Matrix.
Therefore
[tex]det(A*A^{-1}) = det(A)*det(A^{-1}) = det(I) = 1[/tex]
Therefore
[tex]det(A)*det(A^{-1}) = 1[/tex] and [tex]det(A^{-1}) = 1/det(A)[/tex]