Respuesta :

Answer:  The correct answer is: [C]:

_______________________________

    " [tex]3 log_{3} 2[/tex] " .

_______________________________

Step-by-step explanation:

_______________________________

We are given:  [tex]log _{b}x^r = r * log_{b} x[/tex]  ;

We have:  [tex]log_{3}8[/tex]  .

_______________________________

Note that the number:  " 8 " ;  can be written as:  " 2³ " ;

   → since:  " 2³ =  2 * 2 * 2 =  4 * 2 = 8 " .

_______________________________

  → So:  [tex]log{_{3}8 = log_{3}(2^3)[/tex] ;

                     →  which takes the form of the expression:

                     →  " [tex]log_{b}x^r[/tex] " ;  in which:

                                             " b = 3 " ;

                                             " x = 2  " ;

                                             " r = 3 " ;

_______________________________

  Now:  Since:  [tex]log _{b}x^r = r * log_{b} x[/tex] " ;

Substitute our known values for:  " [tex]r * log_{b} x[/tex] " ;  as follows"

  →   "  [tex]3 * log_{3} 2[/tex] " ;

  →  which is:

  →  Answer choice:  [C]: "  [tex]3 log_{3} 2[/tex] " .

________________________________

Hope this is helpful.  

    Best wishes to you!

________________________________

kg0299

Answer:

The answer is C

Step-by-step explanation:

I just did it