Respuesta :
Answer:
The option A) [tex]x^{10}z^7[/tex] is correct answer.
The correct simplification for the given expression [tex]\frac{x^{12}\times z^{11}}{x^2\times z^4}[/tex] is [tex]x^{10}z^7[/tex]
Step-by-step explanation:
Given expression is x to the 12th power times z to the 11th power all over x to the 2nd power times z to the 4th power.
The given expression can be written as [tex]\frac{x^{12}\times z^{11}}{x^2\times z^4}[/tex]
To choose the correct simplification of the given expression :
Now we have to simplify the given expression as below
[tex]\frac{x^{12}\times z^{11}}{x^2\times z^4}[/tex]
[tex]=x^{12}\times z^{11}(x^{-2}\times z^{-4})[/tex] ( by using the identity [tex]\frac{1}{a^m}=a^{-m}[/tex] )
[tex]=(x^{12}.x^{-2})\times (z^{11}.z^{-4})[/tex]
[tex]=x^{12-2}\times z^{11-4}[/tex] ( by using the identity [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=x^{10}\times z^7[/tex]
[tex]=x^{10}z^7[/tex]
∴ [tex]\frac{x^{12}\times z^{11}}{x^2\times z^4}=x^{10}z^7[/tex]
The correct simplification for the given expression [tex]\frac{x^{12}\times z^{11}}{x^2\times z^4}[/tex] is [tex]x^{10}z^7[/tex]
Hence option A) [tex]x^{10}z^7[/tex] is correct answer.
Answer:
A) is correct answer.
Step-by-step explanation:
I took the FLVS Algebra 1 lesson 6.08 quiz